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Online Social Networks (OSNs)

Online social networks (OSNs) have become

ubiquitous parts of modern societies

People use OSNs to stay in touch with their

friends, to read news and discuss societal issues

Some concerns arise, e.g.,

• State actors use bots to adversarially attack

societies and to increase social discord



Malicious Actors are Attacking OSNs

(The New York Times, 2016)

2016 Democratic National Committee

email leak.

• Russian military and intelligence

services have been using the Internet

to sow discord and discredit

legitimate political institutions. (TIME,

2016)



Our Goal
Achieving a theoretical understanding of the consequence of malicious actors

Model social networks as graphs

We formulate the intervention of the adversary as an optimization problem

• Intervention: the effects after conducting some activities in the network:

I Spreading fake news ⇒ changing people’ opinions

• Objective function encodes the desired goal

• Constraints encode the power of the intervention

We consider the opinion formation model as an abstraction of users’ opinions

• DeGroot Model, Bounded Confidence Model, Friedkin-Johnsen Model...

• The societal discord is measured by the opinions



A Glimpse on Friedkin-Johnsen Model
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The graph G = (V,E,w), L is the graph

Laplacian

Nodes with their fixed, private innate

opinions

su ∈ [0, 1]



A Glimpse on Friedkin-Johnsen Model
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Due to peer pressure, the nodes share

different public expressed opinions

ztu ∈ [0, 1] changes on time t

z
(t)
u =

su+
∑

v∈N(u) wuvz
(t−1)
v

1+
∑

v∈N(u) wuv

At the equilibrium state z∗ = (I + L)−1s



Measure Societal Discord by Users’ Opinions
For instance, disagreement, polarization
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The disagreement measures the differences

between expressed opinions

DG,s =
∑

(u,v)∈E wu,v(z∗u − z∗v)2 = sᵀD(L) s

D(L) = (L + I)−1L(L + I)−1

Disagreement is determined by network

structure and innate opinions.



How Much Disagreement Can Malicious Actors Sow on
Online Social Networks



Maximize Disagreement with Full Information
Chen, Racz (TNSE’21) and Gaitonde, Kleinberg, Tardos (EC’20)
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Problem (Full-information)

Maximize disagreement by radicalizing k users’

innate opinions, given the network structure and

innate opinions.

max
s

sᵀD(L) s,

s.t. ‖s− s0‖0 = k, and

s(u) ∈ {s0(u), 1} for all u ∈ V.



Maximize Disagreement with Full Information
Chen, Racz (TNSE’21) and Gaitonde, Kleinberg, Tardos (EC’20)
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They show that disagreement increases by

at most 8dmaxk

They conducted some heuristics, like greedy

algorithm and changing the opinions of

centrists

Adversaries in the full-information setting

are quite powerful



Our Paper:
Maximize Disagreement with Limited Information



Maximize Disagreement with Limited Information
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True innate opinions s0 are very hard to obtain

It still knows the network structure

It still has the power to radicalize opinions

max
s

sᵀD(L) s,

s.t. ‖s− ?‖0 = k, and

s(u) ∈ {?, 1} ∀ u ∈ V.

What strategy can the malicious actor apply?



Maximize Disagreement with Limited Information
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Problem (Limited-information)

Maximize disagreement by radicalizing k users’

innate opinions, given only the network

structure.

max
s

sᵀD(L) s,

s.t. ‖s− 0‖0 = k, and

s ∈ {0, 1}n.

It might select different nodes to radicalize.



Maximize Disagreement with Limited Information
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Theorem (informal)

Assume that the initial innate opinions have

small variance (achieved by technical

assumptions):

O(1)-approximation algorithm to

Limited-information problem ⇒
O(1)-approximation solution

Full-information problem.

Adversaries with limited information are

almost as powerful as with full information



Limited-information Problem: Cardinality-Constrained Max-Cut Variant
On graph with positive and negative edge weights

Figure: The graph Laplacian of
the graph is D(L) . Negative
weights edges are in red.

Regard the disagreement matrix D(L) as a graph

Laplacian

This problem is NP-hard and no longer

submodular

We apply Semidefinite Program (SDP)

Relaxation and and hyperplane rounding to

get a initial cut

We bound the loss on cut on each

greedy move



Theoretical results on Limited-information Problem
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Figure: Approximation Ratio. k = αn.

Theorem (informal)

If k ∈ Ω(n), there exists a randomized

Ω(1)-approximation algorithm for the

limited-information problem that

succeeds with high probability.

We set k ∈ Ω(n) due to technical

difficulties



Experiments



The Factor that Influences the Performance
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Figure: Standard deviation of opinions,
R2 = 0.62

Strong relationship between initial stan-

dard deviation of the innate opinions

and performance of limited-information

methods



SDP-L is the Best Among Limited-information Algorithms
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Limited-information algorithm:

SDP-L: SDP-based

AG-L: Adaptive-Greedy

NAG-L: NonAdaptive-Greedy



Limited-information is at Most a Factor of 1.4 Worse
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Limited-information algorithm:

AG-L: Adaptive-Greedy

NAG-L: NonAdaptive-Greedy



Summary

Our paper studies the adversary’s potential to increase societal discord

We formally prove that this adversary with limited information is almost the same

powerful as the adversary with full information

We propose a constant approximation ratio algorithm for the problem under the

limited information when k = Ω(n)

We evaluate our algorithms in real-world datasets



Open Questions

Can we design a faster algorithm?

The graph with positive and negative edge weights is extremely dense, can we find a sparser

substitute of it?

Can we design an approximation algorithm when k = o(n)?

Is it possible to verify our algorithm in real world?



Appendix: How to Solve the Limited-information Problem?



Limited-information Problem is a MaxCut Variant

Observe (1) D(L)1 = 0; and (2) D(L) is positive semidefinite.

D(L) = D′ −W ′, where W ′ii = 0 and

D′ii =
∑

j W
′
ij .

sᵀD(L) s = 1
2

∑
i,j W

′
i,j(si − sj)2.

max
s

sᵀD(L) s,

s.t. ‖s‖0 = k, and

s ∈ [0, 1]n.



Limited-information Problem is a MaxCut Variant

D(L) = D′ −W ′, and we treat W ′ as a new weighted adjacency matrix on

G′ = (V,W ′).

max
s

sᵀD(L) s,

s.t. ‖s‖0 = k, and

s ∈ [0, 1]n.



Limited-information Problem is a MaxCut Variant

How to solve the MaxCut with k nodes on one side on the G′? (NP-hard, reduction

from MaxCut)
Applying Linear relaxation:
1
2 -approximation algorithm for all k.

Applying Semidefinite relaxation:

> 0.63-approximation algorithm,

when k = 1
2n.

Applying SOS hierarchy:

> 0.85-approximation algorithm,

when k = Ω(n).

max
s

sᵀD(L) s,

s.t. ‖s‖0 = k, and

s ∈ [0, 1]n.



Solve Limited-information Problem with Semidefinite Programming

max
v1,...,vn

1

4

∑
ij

D(L) ijv
ᵀ
i vj ,

s.t.
∑
i<j

vᵀ
i vj =

1

2
n2(1− 2α)2 − n

2
,

vi ∈ Rn, ‖vi‖2 = 1.

max
s

sᵀD(L) s,

s.t. ‖s‖0 = k,

s ∈ [0, 1]n.

The scale does not influence approxima-

tion ratio.



Solve Limited-information Problem with Semidefinite Programming

max
v1,...,vn

1

4

∑
ij

D(L) ijv
ᵀ
i vj ,

s.t.
∑
i<j

vᵀ
i vj =

1

2
n2(1− 2α)2 − n

2
,

vi ∈ Rn, ‖vi‖2 = 1.

Algorithm 1: SDP-based algorithm

Solve the SDP, obtain v1, . . . ,vn;

for T = 1, . . . ,O(1/ε log(1/ε)) do
Sample vector r with each entry

∼ N (0, 1);

Set S = {i : 〈vi, r〉 ≥ 0} and

S̄ = V \ S;

if |S| 6= αn then
greedily move elements from S

(S̄) to S̄ (S) until |S| = αn

return best over T trials;



Solve Limited-information Problem with Semidefinite Programming

max
v1,...,vn

1

4

∑
ij

D(L) ijv
ᵀ
i vj ,

s.t.
∑
i<j

vᵀ
i vj =

1

2
n2(1− 2α)2 − n

2
,

vi ∈ Rn, ‖vi‖2 = 1.

Let M∗ be the optimal solution of SDP.

Let cut(S) be the cut if S consists of one

partition, after hyperplane rounding.

E[ cut(S)
M∗ ] ≥ π

2 .

E[|S|
∣∣S̄∣∣] ≥ 0.878n2(1− α)α.

⇒ Markov inequality: ∃S
cut(S)
M∗ +

|S||S̄|
n2α(1−α) ≥ (1−ε)(π2 +0.878).



Solve Limited-information Problem with Semidefinite Programming

max
v1,...,vn

1

4

∑
ij

D(L) ijv
ᵀ
i vj ,

s.t.
∑
i<j

vᵀ
i vj =

1

2
n2(1− 2α)2 − n

2
,

vi ∈ Rn, ‖vi‖2 = 1.

Let M∗ be the optimal solution of SDP.

Let cut(S) be the cut if S consists of one

partition, after hyperplane rounding. Let S′

be the set of nodes in one partition.

Markov inequality: ∃S
cut(S)
M∗ +

|S||S̄|
n2α(1−α) ≥ (1−ε)(π2 +0.878).

Moving one node from S′ to S̄′ loses
2cut(S′)
|S′| .



Solve Limited-information Problem with Semidefinite Programming

max
v1,...,vn

1

4

∑
ij

D(L) ijv
ᵀ
i vj ,

s.t.
∑
i<j

vᵀ
i vj =

1

2
n2(1− 2α)2 − n

2
,

vi ∈ Rn, ‖vi‖2 = 1.
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Figure: Approximation Ratio. k = αn.



Interventions as Optimization Problems
Objective function encodes the desired goal; Constraints encode the power of the intervention.

Musco, Musco, Tsourakakis (WebConf’18):

• Suppose we can change the network structure such that the sum of degree keeps the

same, then minimizing the sum of disagreement and polarization is a convex

optimization problem.

Chitra, Musco (WSDM’20):

• If OSN providers repeatedly change the network structure to reduce disagreement, this

will increase the polarization.

Tu, Neumann (WebConf’22):

• Model for simulating how viral content in OSNs impacts user opinions, and increase

polarization.


