Adversaries with Limited Information in the Friedkin-Johnsen Model

Sijing Tu, Stefan Neumann, Aristides Gionis

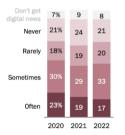
KTH Royal Institute of Technology

August 9, 2023

Online Social Networks (OSNs)

News consumption on social media

% of U.S. adults who get news from social media ...



Note: Figures may not add up to 100% due to rounding. Source: Survey of U.S. adults conducted July 18-Aug. 21, 2022.

PEW RESEARCH CENTER

 Online social networks (OSNs) have become ubiquitous parts of modern societies

- People use OSNs to stay in touch with their friends, to read news and discuss societal issues
- Some concerns arise, e.g.,
 - State actors use bots to adversarially attack societies and to increase social discord

Malicious Actors are Attacking OSNs

(The New York Times, 2016)

- 2016 Democratic National Committee email leak.
 - Russian military and intelligence services have been using the Internet to sow discord and discredit legitimate political institutions. (TIME,

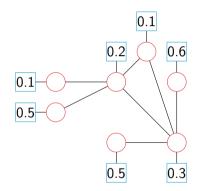
2016)

Our Goal

Achieving a theoretical understanding of the consequence of malicious actors

- Model social networks as graphs
- We formulate the *intervention* of the adversary as an *optimization problem*
 - Intervention: the effects after conducting some activities in the network:
 - ► Spreading fake news ⇒ changing people' opinions
 - Objective function encodes the desired goal
 - Constraints encode the power of the *intervention*
- We consider the *opinion formation model* as an abstraction of users' opinions
 - DeGroot Model, Bounded Confidence Model, Friedkin-Johnsen Model...
 - The societal discord is measured by the opinions

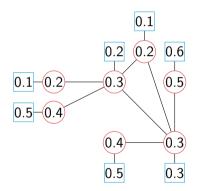
A Glimpse on Friedkin-Johnsen Model



- The graph *G* = (*V*, *E*, *w*), **L** is the graph Laplacian
- Nodes with their *fixed*, *private* innate opinions

$$\bullet \ s_u \in [0,1]$$

A Glimpse on Friedkin-Johnsen Model



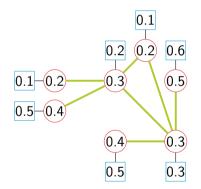
 Due to peer pressure, the nodes *share* different public expressed opinions

■
$$z_u^t \in [0, 1]$$
 changes on time t
■ $z_u^{(t)} = \frac{s_u + \sum_{v \in N(u)} w_{uv} z_v^{(t-1)}}{1 + \sum_{v \in N(u)} w_{uv}}$

$$\blacksquare$$
 At the equilibrium state $\mathbf{z}^* = (\mathbf{I} + \mathbf{L})^{-1} \mathbf{s}$

Measure Societal Discord by Users' Opinions

For instance, disagreement, polarization



The disagreement measures the differences between expressed opinions

$$\mathcal{D}_{G,\mathbf{s}} = \sum_{(u,v)\in E} w_{u,v} (z_u^* - z_v^*)^2 = \mathbf{s}^{\mathsf{T}} \mathcal{D}(\mathbf{L}) \, \mathbf{s}$$

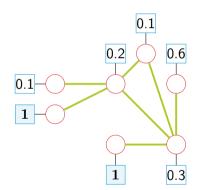
$$\mathbf{D}(\mathbf{L}) = (\mathbf{L} + \mathbf{I})^{-1}\mathbf{L}(\mathbf{L} + \mathbf{I})^{-1}$$

 Disagreement is determined by network structure and innate opinions.

How Much Disagreement Can Malicious Actors Sow on Online Social Networks

Maximize Disagreement with Full Information

Chen, Racz (TNSE'21) and Gaitonde, Kleinberg, Tardos (EC'20)



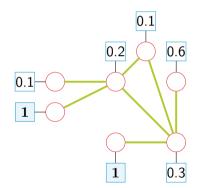
Problem (Full-information)

Maximize disagreement by radicalizing k users' innate opinions, given the network structure and innate opinions.

$$\begin{split} \max_{\mathbf{s}} \quad \mathbf{s}^{\mathsf{T}} \mathcal{D}(\mathbf{L}) \, \mathbf{s}, \\ s.t. \quad \|\mathbf{s} - \mathbf{s}_0\|_0 = k, \text{ and} \\ \mathbf{s}(u) \in \{\mathbf{s}_0(u), \mathbf{1}\} \text{ for all } u \in V. \end{split}$$

Maximize Disagreement with Full Information

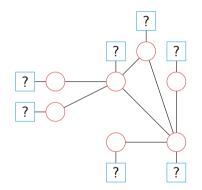
Chen, Racz (TNSE'21) and Gaitonde, Kleinberg, Tardos (EC'20)



- \blacksquare They show that disagreement increases by at most $8d_{\max}k$
- They conducted some heuristics, like greedy algorithm and changing the opinions of centrists
- Adversaries in the full-information setting are quite powerful

Our Paper: Maximize Disagreement with Limited Information

Maximize Disagreement with Limited Information



True innate opinions \mathbf{s}_0 are very hard to obtain

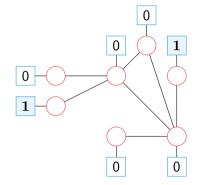
- It still knows the network structure
- It still has the power to radicalize opinions $\max_{\mathbf{s}} \quad \mathbf{s}^{\mathsf{T}} \mathcal{D}(\mathbf{L}) \, \mathbf{s},$

s.t.
$$\|\mathbf{s} - ?\|_0 = k$$
, and

$$\mathbf{s}(u) \in \{?, 1\} \ \forall \ u \in V.$$

What strategy can the malicious actor apply?

Maximize Disagreement with Limited Information



Problem (Limited-information)

Maximize disagreement by radicalizing k users' innate opinions, given **only** the network structure.

$$\max_{\mathbf{s}} \quad \mathbf{s}^{\mathsf{T}} \mathcal{D}(\mathbf{L}) \, \mathbf{s},$$

$$s.t. \quad \|\mathbf{s} - \mathbf{0}\|_0 = k, \text{ and }$$

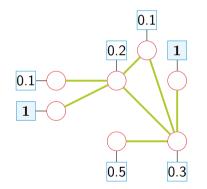
$$\mathbf{s} \in \{0, 1\}^n.$$

It might select different nodes to radicalize.

rebound

(人間) トイヨト イヨト

Maximize Disagreement with Limited Information



Theorem (informal)

Assume that the initial innate opinions have small variance (achieved by technical assumptions):

- *O*(1)-approximation algorithm to Limited-information problem ⇒ *O*(1)-approximation solution *Full-information problem.*
- Adversaries with limited information are almost as powerful as with full information

rebound

Limited-information Problem: Cardinality-Constrained Max-Cut Variant

On graph with positive and negative edge weights

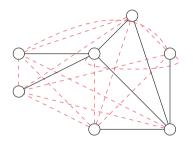


Figure: The graph Laplacian of the graph is $\mathcal{D}(\mathbf{L})$. Negative weights edges are in red.

Regard the disagreement matrix $\mathcal{D}(\mathbf{L})$ as a graph Laplacian

- This problem is NP-hard and no longer submodular
- We apply Semidefinite Program (SDP)
 Relaxation and and hyperplane rounding to get a initial *cut*
- We bound the loss on *cut* on each greedy move

Theoretical results on Limited-information Problem

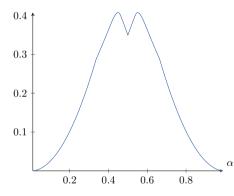


Figure: Approximation Ratio. $k = \alpha n$.

Theorem (informal)

If $k \in \Omega(n)$, there exists a randomized $\Omega(1)$ -approximation algorithm for the limited-information problem that succeeds with high probability.

• We set $k \in \Omega(n)$ due to technical difficulties

Experiments

The Factor that Influences the Performance

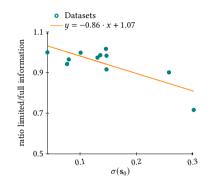
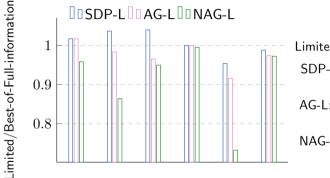


Figure: Standard deviation of opinions, $R^2 = 0.62$

Strong relationship between initial standard deviation of the innate opinions and performance of limited-information methods

SDP-L is the Best Among Limited-information Algorithms



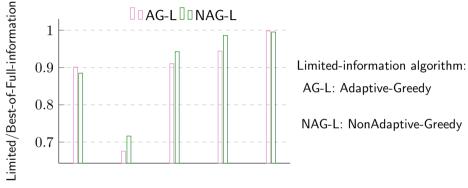
Limited-information algorithm: SDP-L: SDP-based

AG-L: Adaptive-Greedy

NAG-L: NonAdaptive-Greedy

All the small datasets (k = 0.1n)

Limited-information is at Most a Factor of $1.4\ \mathrm{Worse}$



All the larger datasets (k = 0.01n)

- Our paper studies the adversary's potential to increase societal discord
- We formally prove that this adversary with limited information is almost the same powerful as the adversary with full information
- We propose a constant approximation ratio algorithm for the problem under the limited information when $k = \Omega(n)$
- We evaluate our algorithms in real-world datasets

Open Questions

- Can we design a faster algorithm?
- The graph with positive and negative edge weights is extremely dense, can we find a sparser substitute of it?
- Can we design an approximation algorithm when k = o(n)?
- Is it possible to verify our algorithm in real world?

Adversaries with Limited Information in the Friedkin–Johnsen Model

Sijing Tu*1, Stefan Neumann^{†1}, and Aristides Gionis^{‡1}

¹KTH Royal Institute of Technology, Stockholm, Sweden

Appendix: How to Solve the Limited-information Problem?

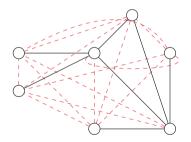
Limited-information Problem is a MaxCut Variant

Observe (1) $\mathcal{D}(\mathbf{L}) \mathbf{1} = \mathbf{0}$; and (2) $\mathcal{D}(\mathbf{L})$ is positive semidefinite.

$$\begin{aligned} \mathcal{D}(\mathbf{L}) &= D' - W', \text{ where } W'_{ii} = 0 \text{ and } & \max_{\mathbf{s}} \quad \mathbf{s}^{\mathsf{T}} \mathcal{D}(\mathbf{L}) \, \mathbf{s}, \\ D'_{ii} &= \sum_{j} W'_{ij}. & s.t. \quad \|\mathbf{s}\|_{0} = k, \text{ and} \\ \mathbf{s}^{\mathsf{T}} \mathcal{D}(\mathbf{L}) \, \mathbf{s} &= \frac{1}{2} \sum_{i,j} W'_{i,j} (s_{i} - s_{j})^{2}. & \mathbf{s} \in [0, 1]^{n}. \end{aligned}$$

Limited-information Problem is a MaxCut Variant

 $\mathcal{D}(\mathbf{L})=D'-W',$ and we treat W' as a new weighted adjacency matrix on G'=(V,W').

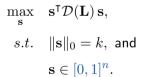


$$\max_{\mathbf{s}} \quad \mathbf{s}^{\mathsf{T}} \mathcal{D}(\mathbf{L}) \, \mathbf{s},$$
$$s.t. \quad \|\mathbf{s}\|_{0} = k, \text{ and}$$
$$\mathbf{s} \in [0, 1]^{n}.$$

Limited-information Problem is a MaxCut Variant

How to solve the MaxCut with k nodes on one side on the G'? (NP-hard, reduction from MaxCut)

- Applying Linear relaxation:
 - $\frac{1}{2}$ -approximation algorithm for all k.
- Applying Semidefinite relaxation: > 0.63-approximation algorithm, when $k = \frac{1}{2}n$.
- Applying SOS hierarchy:
 > 0.85-approximation algorithm, when k = Ω(n).



$$\begin{split} \max_{\mathbf{v}_1,\dots,\mathbf{v}_n} & \frac{1}{4} \sum_{ij} \mathcal{D}(\mathbf{L})_{ij} \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j, & \max_{\mathbf{s}} \\ s.t. & \sum_{i < j} \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j = \frac{1}{2} n^2 (1 - 2\alpha)^2 - \frac{n}{2}, \\ & \mathbf{v}_i \in \mathbb{R}^n, & \|\mathbf{v}_i\|_2 = 1. & \text{The scale does not} \\ \end{split}$$

 $\begin{aligned} \max_{\mathbf{s}} \quad \mathbf{s}^{\mathsf{T}} \mathcal{D}(\mathbf{L}) \, \mathbf{s}, \\ s.t. \quad \|\mathbf{s}\|_0 = k, \\ \mathbf{s} \in [0, 1]^n. \end{aligned}$

The scale does not influence approximation ratio.

$$\max_{\mathbf{v}_1,\dots,\mathbf{v}_n} \quad \frac{1}{4} \sum_{ij} \mathcal{D}(\mathbf{L})_{ij} \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j,$$

s.t.
$$\sum_{i < j} \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j = \frac{1}{2} n^2 (1 - 2\alpha)^2 - \frac{n}{2},$$

$$\mathbf{v}_i \in \mathbb{R}^n, \qquad \|\mathbf{v}_i\|_2 = 1.$$

Algorithm 1: SDP-based algorithm

 $\begin{array}{l} \mbox{Solve the SDP, obtain } \mathbf{v}_1, \dots, \mathbf{v}_n; \\ \mbox{for } T=1, \dots, \mathcal{O}(1/\epsilon \log(1/\epsilon)) \mbox{ do } \\ \mbox{Sample vector } \mathbf{r} \mbox{ with each entry} \\ \sim \mathcal{N}(0,1); \\ \mbox{Set } S=\{i: \langle \mathbf{v}_i, \mathbf{r} \rangle \geq 0\} \mbox{ and } \\ \mbox{ } \bar{S}=V \setminus S; \\ \mbox{if } |S| \neq \alpha n \mbox{ then } \\ \mbox{ greedily move elements from } S \\ \mbox{ } (\bar{S}) \mbox{ to } \bar{S} \mbox{ } (S) \mbox{ until } |S|=\alpha n \end{array}$

return best over T trials;

$$\max_{\mathbf{v}_1,\dots,\mathbf{v}_n} \quad \frac{1}{4} \sum_{ij} \mathcal{D}(\mathbf{L})_{ij} \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j,$$

s.t.
$$\sum_{i < j} \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j = \frac{1}{2} n^2 (1 - 2\alpha)^2 - \frac{n}{2},$$

$$\mathbf{v}_i \in \mathbb{R}^n, \qquad \|\mathbf{v}_i\|_2 = 1.$$

Let M^* be the optimal solution of SDP. Let cut(S) be the cut if S consists of one partition, after hyperplane rounding.

$$\blacksquare \mathbb{E}[\frac{\mathsf{cut}(S)}{M^*}] \ge \frac{\pi}{2}.$$

•
$$\mathbb{E}[|S| |\bar{S}|] \ge 0.878n^2(1-\alpha)\alpha.$$

$$\begin{array}{l} \bullet \quad \Rightarrow \mbox{Markov inequality: } \exists S \\ \frac{\operatorname{cut}(S)}{M^*} + \frac{|S||\bar{S}|}{n^2\alpha(1-\alpha)} \geq (1-\epsilon)(\frac{\pi}{2}+0.878). \end{array}$$

$$\max_{\mathbf{v}_1,\dots,\mathbf{v}_n} \quad \frac{1}{4} \sum_{ij} \mathcal{D}(\mathbf{L})_{ij} \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j,$$

s.t.
$$\sum_{i < j} \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j = \frac{1}{2} n^2 (1 - 2\alpha)^2 - \frac{n}{2},$$

$$\mathbf{v}_i \in \mathbb{R}^n, \qquad \|\mathbf{v}_i\|_2 = 1.$$

Let M^* be the optimal solution of SDP. Let $\operatorname{cut}(S)$ be the cut if S consists of one partition, after hyperplane rounding. Let S' be the set of nodes in one partition.

- $\begin{array}{l} \blacksquare \quad \mbox{Markov inequality: } \exists S \\ \frac{\operatorname{cut}(S)}{M^*} + \frac{|S||\bar{S}|}{n^2\alpha(1-\alpha)} \geq (1-\epsilon)(\frac{\pi}{2}+0.878). \end{array}$
- Moving one node from S' to \bar{S}' loses $\frac{2\mathsf{cut}(S')}{|S'|}.$

$$\max_{\mathbf{v}_1,\dots,\mathbf{v}_n} \frac{1}{4} \sum_{ij} \mathcal{D}(\mathbf{L})_{ij} \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j,$$

s.t.
$$\sum_{i < j} \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j = \frac{1}{2} n^2 (1 - 2\alpha)^2 - \frac{n}{2},$$

$$\mathbf{v}_i \in \mathbb{R}^n, \quad \|\mathbf{v}_i\|_2 = 1.$$

Figure: Approximation Ratio. $k = \alpha n$.

Interventions as Optimization Problems

Objective function encodes the desired goal; Constraints encode the power of the intervention.

- Musco, Musco, Tsourakakis (WebConf'18):
 - Suppose we can change the network structure such that the sum of degree keeps the same, then minimizing the sum of disagreement and polarization is a convex optimization problem.
- Chitra, Musco (WSDM'20):
 - If OSN providers repeatedly change the network structure to reduce disagreement, this will increase the polarization.
- Tu, Neumann (WebConf'22):
 - Model for simulating how viral content in OSNs impacts user opinions, and increase polarization.

