Adversaries with Limited Information in the Friedkin-Johnsen Model

SIJING TU · STEFAN NEUMANN · ARISTIDES GIONIS {sijing, neum, argioni}@kth.se, KTH Royal Institute of Technology, Sweden

MOTIVATION

Phenomenon:

- Russian military and intelligence services have been using online social networks to sow discord and discredit legitimate political institutions.
- A recent analysis regarding the Iranian disinformation campaigns shows that their main goal is to pit groups against each other.

Observation:

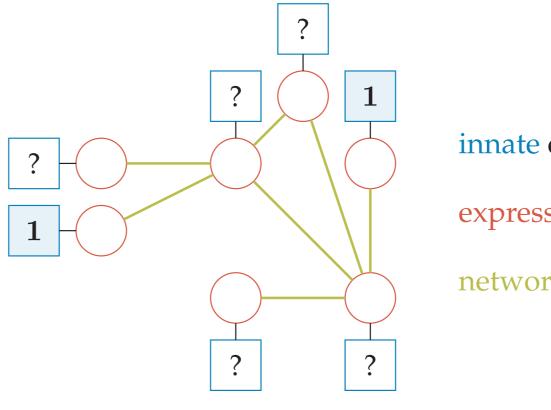
• The network structure is easier to obtain compared to users' opinions.

Research Question:

• How much additional discord can attackers instigate in online social networks, given only the network structure?

OPINION FORMATION AND NETWORK DISCORD

Let G = (V, E, w) be a weighted undirected graph.


Opinion Formation: Friedkin–Johnsen model [2]

Each user $u \in V$ has

ADVERSARIES WITH LIMITED INFORMATION

We assume a weak **adversary with limited-information** that

- has access to the network structure;
- but **does not** have access to the **innate** opinions;
- and can radicalize *k* nodes' innate opinions.

innate opinions;

expressed opinions;

network structure.

LIMITED-INFORMATION MODEL

Observation: Assume that the innate opinions are centered around some constant, the adversary applies the following strategy:

- an expressed opinion $z_u \in [-1, 1]$, which depends on the network and which changes over time due to peer pressure,
- an innate opinion $s_u \in [-1, 1]$ that is fixed.

The expressed opinions are updated based on the update rule:

$$\mathbf{z}_{u}^{(t+1)} = \frac{s_{u} + \sum_{(u,v) \in E} w_{u,v} z_{v}^{(t)}}{1 + \sum_{v \in N(u)} w_{u,v}}$$

Equilibrium opinions for $t \to \infty$

$$\mathbf{z}^* = (\mathbf{I} + \mathbf{L})^{-1} \mathbf{s}$$

where **L** is the graph Laplacian and **I** is the identity matrix.

Network Discord:	Name	Notation	Matrix
	Polarization Disagreement	$\mathcal{P}(\mathbf{L}) \ \mathcal{D}(\mathbf{L})$	$\frac{(\mathbf{I} + \mathbf{L})^{-1}(\mathbf{I} - \frac{11^{T}}{n})(\mathbf{I} + \mathbf{L})^{-1}}{(\mathbf{L} + \mathbf{I})^{-1}\mathbf{L}(\mathbf{L} + \mathbf{I})^{-1}}$

Discord matrix $A(\mathbf{L}) \in \{\mathcal{P}(\mathbf{L}), \mathcal{D}(\mathbf{L})\}$:

• Polarization $\mathcal{P}_{G,\mathbf{s}}$

measures the variance of the expressed opinions:

 $\mathcal{P}_{G,\mathbf{s}} = \sum_{v \in V} (z_v - \overline{\mathbf{z}})^2 = \mathbf{s}^{\mathsf{T}} \mathcal{P}(\mathbf{L}) \mathbf{s}.$

• Disagreement $\mathcal{D}_{G,\mathbf{s}}$

measures the differences between the expressed opinions: $\mathcal{D}_{G,\mathbf{s}} = \sum_{(u,v)\in E} w_{u,v} (z_u - z_v)^2 = \mathbf{s}^{\mathsf{T}} \mathcal{D}(\mathbf{L}) \mathbf{s}.$

Problem (Maximizing Discord with Full Information [1, 3]). Radicalize *k* users' innate opinions by setting their innate opinions to 1.

$$\max_{\mathbf{s}} \quad \mathbf{s}^{\mathsf{T}} A(\mathbf{L}) \mathbf{s},$$

such that $\|\mathbf{s} - \mathbf{s}_0\|_0 = k$, and
 $\mathbf{s}(u) \in \{\mathbf{s}_0(u), 1\}$ for all $u \in V$

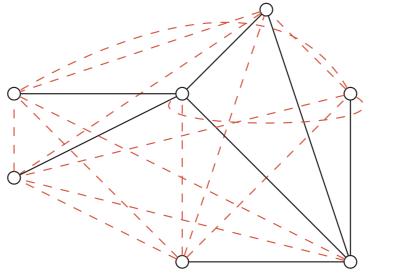
- It pretends the initial innate opinions of all the nodes are 0;
- it finds the nodes that maximize the discord in this simplified setting;
- it radicalizes these selected nodes in this simplified model in the original problem.

Problem (Maximizing Discord with Limited Information).			
max s	$\mathbf{s}^{T}A(\mathbf{L})\mathbf{s},$		
s.t.	$\ \mathbf{s} - 0\ _0 = k$, and		
	$\mathbf{s} \in \{0, 1\}^n.$		

Connection: When the **innate** opinions have small variance, and other mild assumptions hold, any O(1)-approximate solution to the limited-information problem is a O(1)-approximation solution to the full-information problem.

Analysis: Solving the above limited-information problem is equivalent to solving a constrained Max-Cut problem with positive and *negative* edge weights.

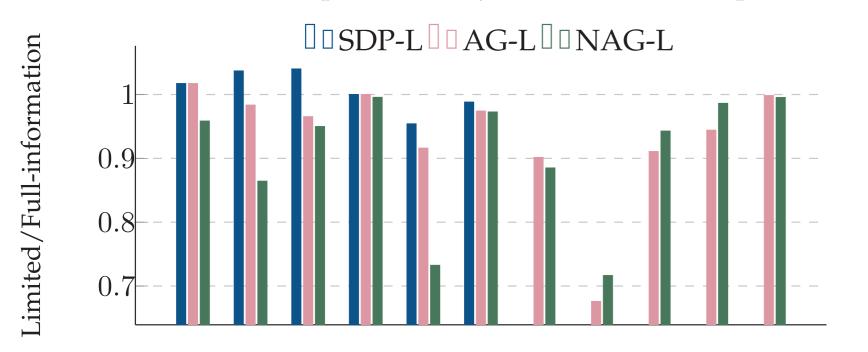
- We apply a semidefinite-relaxation based algorithm to solve it.
- We compare our algorithm with greedy algorithms and other heuristics.

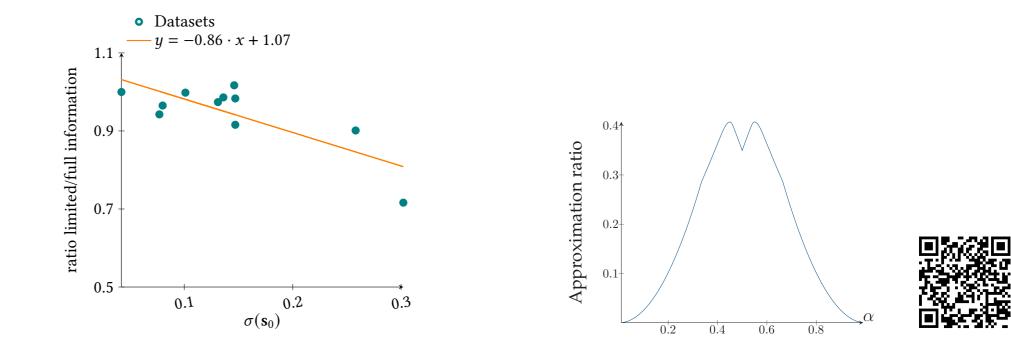

the cut.

• The negative edges are in red,

• We partition the nodes into sub-

sets of sizes (n-k, k) to maximize


• positive edges are in black.


- The problem is **NP**-hard;
- The problem has constant approximation ratio when $k = \Omega(n)$.

EXPERIMENTS

Results on all datasets: SDP-L is the best among limited-information algorithms, limited-information algorithms are at most a factor of 1.4 worse. (SDP-L: SDP-based; AG-L: Adaptive-Greedy; NAG-L: NonAdaptive-Greedy)

All the datasets (sorted according to *n*, SDP-L runs on 6 smaller datasets) Note: Baselines such as selecting high-degree nodes perform much worse.

(a) standard deviation of opinions, $R^2 = 0.62$ (b) approximation ratio

- [1] M. F. Chen and M. Z. Racz. An adversarial model of network disruption: Maximizing disagreement and polarization in social networks. *IEEE Transactions on Network Science and Engineering*, 2021.
- [2] N. E. Friedkin and E. C. Johnsen. Social influence and opinions. *Journal of Mathematical Sociology*, 1990.
- [3] J. Gaitonde, J. M. Kleinberg, and É. Tardos. Adversarial perturbations of opinion dynamics in networks. In *EC*, 2020.