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MOTIVATION

Phenomenon: Information spreading has been taken
advantage to influnece people’s opinions, for example,

fake news about vaccination, and,
state bots influencing the election.

Opinion-Based Network Indices which measures, for
example, average Opinion, polarization, disagreement, and sum
of disagreement and controversy in the social network.

Research Questions:

We quantify influence in terms of estimating and
optimizing network indices.

PROBLEM SETTING

Problem Setting: The problem sets on a weighted
undirected graph G = (V,E,w). L is the graph laplacian,
Du,u is the sum of incident edge weights.

Each user u has an expressed opinion zu ∈ [0, 1], which
depends on the network, and a fixed innate opinion
su ∈ [0, 1].
Each user turns into one of the three status upon
exposing viral content: spread, acknowledge, and
ignore.
Two campaign contents: marketing, and polarizing.

Information Spreading: Independent Cascade Model [5].

Each edge (u, v) is assigned with an influence
probability puv , and a parameter δ indicating the
tendency to share, seed nodes are inital spread nodes.
At each time step, each spread node u gets one shot at
influencing its non-spread neighbor v.

If v is ignore or acknowledge, with probability δpuv , v
switches to spread;
If v is ignore, with probability (1− δ)puv , v switches
to acknowledge.

Updating Innate Opinions: Given parameter ε, once a
node first switches to spread or acknowledge status.

marketing content: ŝu = min{su + ε, 1};
polarizing content: If su ≥ τ , ŝu = max{su − ε, 0}, then
embrace,ŝu = min{su + ε, 1}; If su < τ , then repel,
adjusts ŝu = max{0, su − ε}.

Updating Expressed Opinions: Friedkin-Johnsen
Model [3]. z(t+1) = (D + I)−1(Wz(t) + s).

MODEL

Spread-acknowledge Model with respect to state
transitioning and actions performed for a single node v. In
the initial round, k seed nodes are in state spread, while the
rest of nodes are in state inactive.
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two-stage model:

First stage: Performing information spread until no new
users have changed their state to spread.
Second stage: Updating users’ expressed opinions.

Lemma. With same seed nodes, Spread-acknowledge
Model ≡ two-stage model on the distribution of innate
and expressed opinions.

Network Indices:
Index Notation Matrix

Polarization P(L) (I + L)−1(I− 11ᵀ

n )(I + L)−1

Disagreement D(L) (L + I)−1L(L + I)−1

Disagreement–controversy Idc(L) (L + I)−1

Let M(L) denotes one of the matrices, let ŝ be the final
innate opinions. Then E[ŝᵀM(L) ŝ] is the measure of corre-
sponding index.

ESTIMATING AND OPTIMIZING

Our objective is to compute E[ŝᵀM(L) ŝ]. We also compute
the sum of expressed opinions, i.e., E[

∑
ẑi].

Estimating

We use Monte Carlo Simulation to estimate E[ŝ].
Then we apply fast algorithmr [7] based on Laplacian
solver to calculate E[ŝᵀM(L) ŝ].

Optimizing (Maximizing network indices)

We apply Sampling Technique based on Reverse
Reachable set [1].

We derive an (1− 1
e − ε) approximation algrithm for

maximizing Sum .
We derive a data-depdendent approximation
algorithm, based on sandwich method.

Dis , Pol , DisCon ;
We also design faster heuristics, and in practice, close
to the approximation algorithm. We maximize
E[2sᵀM(L) ∆ŝ], and evaluate on the objective
function.

LinDis , LinPol , LinDisCon ;

Regarding sandwich method. Let
µ0(S) = E[2sᵀM(L) ∆ŝ + ∆ŝᵀM(L) ∆ŝ],
µL(S) = E[2sᵀM(L) ∆ŝ],
µU (S) = E[2sᵀM(L) ∆ŝ + ∆ŝᵀM(L) U∆ŝ].

Theorem. [6] Let S∗ = argmax|S|≤k µ0(S). Then µ0(S) ≥
max

{
µ0(SU )
µU (SU )

, µL(S∗)
µ0(S∗)

}
(1− 1

e
− ε)µ0(S

∗).

EXPERIMENTS

Experimental Results. We report the relative increase of each index in percent.

Results for Marketing campaigns with k = d0.5% · ne seeds.

Dataset Sum Index Polarization Index

Sum LinDisCon LinPol MaxInflu Random FJ Sum LinDisCon LinPol MaxInflu Random FJ FJUpp

Netscience 2.79 2.75 0.74 2.78 0.27 0.11 3.15 3.18 7.54 3.17 -0.06 2.36 10.54
WikiVote 4.14 4.12 0.53 4.11 0.3 0.11 -0.64 -0.61 3.83 -0.58 -0.06 2.92 12.29
Brightkite 6.16 6.15 0.72 6.17 0.27 - -0.17 -0.06 4.27 -0.24 -0.07 - -
WikiTalk 9.27 9.27 1.73 9.28 0.29 - -0.82 -0.71 3.37 -0.79 -0.09 - -

Results for polarizing campaigns with k = d0.5% · ne seeds

Dataset Sum Index Polarization Index

Sum LinDisCon LinPol MaxInflu Random FJ Sum LinDisCon LinPol MaxInflu Random FJ FJUpp

Netscience 0.48 0.46 0.04 0.34 -0.01 0.11 2.72 5.03 7.62 5.66 0.62 2.36 10.54
WikiVote 0.33 0.25 -0.28 -0.33 -0.02 0.11 3.14 5.83 9.46 9.14 0.64 2.92 12.29
Brightkite 0.38 0.24 -0.02 0.01 0.0 - 5.66 13.35 15.86 15.58 0.7 - -
WikiTalk 0.49 0.29 0.02 0.02 0.0 - 13.46 25.84 28.79 28.57 0.73 - -

Datasets. We obtain 16 datasets from public repositories:
Konect, SNAP, and Network Repository. The size of the
data set ranges from 0.2k to 92k nodes; 0.5k to 360k edges.

Baselines. MaxInflu chooses the seed nodes that maximize

the influence; Random selects seed nodes uniformly ran-
domly; FJ [2] greedily maximizes the graph indices that
allowes to change k innate user opinions arbitrarily much,
and FJUpp [4] is an analytic upper bound.
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