A Viral Marketing-Based Model For Opinion Dynamics in Online Social Networks

SIJING TU · STEFAN NEUMANN {sijing, neum}@kth.se, KTH Royal Institute of Technology, Sweden

MOTIVATION

Phenomenon: Information spreading has been taken advantage to influnece people's opinions, for example,

- fake news about vaccination, and,
- state bots influencing the election.

Opinion-Based Network Indices which measures, for example, average Opinion, polarization, disagreement, and sum of disagreement and controversy in the social network.

Research Questions:

• We quantify influence in terms of estimating and optimizing network indices.

PROBLEM SETTING

Problem Setting: The problem sets on a weighted undirected graph G = (V, E, w). L is the graph laplacian, $\mathbf{D}_{u,u}$ is the sum of incident edge weights.

- Each user u has an *expressed* opinion $z_u \in [0, 1]$, which depends on the network, and a fixed *innate* opinion $s_u \in [0, 1].$
- Each user turns into one of the three status upon exposing viral content: spread, acknowledge, and ignore.
- Two campaign contents: marketing, and polarizing.

Information Spreading: Independent Cascade Model [5].

- Each edge (u, v) is assigned with an influence probability p_{uv} , and a parameter δ indicating the tendency to share, seed nodes are inital spread nodes.
- At each time step, each spread node *u* gets one shot at influencing its non-spread neighbor v.
 - If v is ignore or acknowledge, with probability δp_{uv} , v switches to spread;
 - If v is ignore, with probability $(1 \delta)p_{uv}$, v switches to acknowledge.

Updating Innate Opinions: Given parameter ϵ , once a node first switches to spread or acknowledge status.

- marketing content: $\hat{\mathbf{s}}_u = \min\{\mathbf{s}_u + \epsilon, 1\};$
- polarizing content: If $\mathbf{s}_u \geq \tau$, $\hat{\mathbf{s}}_u = \max{\{\mathbf{s}_u \epsilon, 0\}}$, then embrace, $\hat{\mathbf{s}}_u = \min\{\mathbf{s}_u + \epsilon, 1\}$; If $\mathbf{s}_u < \tau$, then repel, adjusts $\hat{\mathbf{s}}_u = \max\{0, \mathbf{s}_u - \epsilon\}.$

Updating Expressed Opinions: Friedkin-Johnsen Model [3]. $\mathbf{z}^{(t+1)} = (\mathbf{D} + \mathbf{I})^{-1} (\mathbf{W} \mathbf{z}^{(t)} + \mathbf{s}).$

Let $\mathcal{M}(\mathbf{L})$ denotes one of the matrices, let $\hat{\mathbf{s}}$ be the final innate opinions. Then $\mathbb{E}[\hat{\mathbf{s}}^{\mathsf{T}}\mathcal{M}(\mathbf{L})\hat{\mathbf{s}}]$ is the measure of corresponding index.

MODEL

Spread-acknowledge Model with respect to state transitioning and actions performed for a single node v. In the initial round, *k* seed nodes are in state spread, while the rest of nodes are in state inactive.

two-stage model:

- First stage: Performing information spread until no new users have changed their state to spread.
- Second stage: Updating users' expressed opinions.

With same seed nodes, **Spread-acknowledge** Lemma. **Model** \equiv **two-stage model** on the distribution of innate and expressed opinions.

Index Notation Matri	Vetwork Indices:										
	x										
Polarization $\mathcal{P}(\mathbf{L}) \qquad (\mathbf{I} + \mathbf{L})^{-1} (\mathbf{I} - \frac{11}{r})$	$(\mathbf{I} + \mathbf{L})^{-1}$										
Disagreement $\mathcal{D}(\mathbf{L}) = (\mathbf{L} + \mathbf{I})^{-1} \mathbf{L}(\mathbf{J})$	$(\mathbf{L} + \mathbf{I})^{-1}$										
Disagreement–controversy $\mathcal{I}^{dc}(\mathbf{L})$ $(\mathbf{L} + \mathbf{I})$	-1										

ESTIMATING AND OPTIMIZING

Our objective is to compute $\mathbb{E}[\hat{\mathbf{s}}^{\mathsf{T}}\mathcal{M}(\mathbf{L})\hat{\mathbf{s}}]$. We also compute the sum of expressed opinions, i.e., $\mathbb{E}[\sum \hat{\mathbf{z}}_i]$.

Estimating

- We use Monte Carlo Simulation to estimate $\mathbb{E}[\hat{s}]$.
- Then we apply fast algorithmr [7] based on Laplacian solver to calculate $\mathbb{E}[\hat{\mathbf{s}}^{\mathsf{T}}\mathcal{M}(\mathbf{L})\hat{\mathbf{s}}].$

Optimizing (Maximizing network indices)

- We apply Sampling Technique based on Reverse Reachable set [1].
 - We derive an $(1 \frac{1}{e} \epsilon)$ approximation algorithm for maximizing Sum.
 - We derive a data-depdendent approximation algorithm, based on sandwich method.

Datase

_____ Netscier WikiVo Brightki WikiTa

• Results for polarizing campaigns with $k = \lfloor 0.5\% \cdot n \rfloor$ seeds

Datase

Netscier WikiVo **Brightk** WikiTa

Datasets. We obtain 16 datasets from public repositories: Konect, SNAP, and Network Repository. The size of the data set ranges from 0.2k to 92k nodes; 0.5k to 360k edges.

• Dis, Pol, DisCon; • We also design faster heuristics, and in practice, close to the approximation algorithm. We maximize $\mathbb{E}[2s^{\intercal}\mathcal{M}(\mathbf{L})\Delta\hat{\mathbf{s}}]$, and evaluate on the objective function.

Theorem. [6] Let $S^* = \arg \max_{|S| \le k} \mu_0(S)$. Then $\mu_0(S) \ge 1$ $\max\left\{\frac{\mu_0(S_U)}{\mu_U(S_U)}, \frac{\mu_L(S^*)}{\mu_0(S^*)}\right\} (1 - \frac{1}{e} - \epsilon) \,\mu_0(S^*).$

EXPERIMENTS

Experimental Results. We report the relative increase of each index in percent. • Results for Marketing campaigns with $k = \lfloor 0.5\% \cdot n \rfloor$ seeds.

et	Sum Index							Polarization Index							
	Sum	LinDisCon	LinPol	MaxInflu	Random	FJ	Sum	LinDisCon	LinPol	MaxInflu	Random	FJ	FJUpp		
nce	2.79	2.75	0.74	2.78	0.27	0.11	3.15	3.18	7.54	3.17	-0.06	2.36	10.54		
ote	4.14	4.12	0.53	4.11	0.3	0.11	-0.64	-0.61	3.83	-0.58	-0.06	2.92	12.29		
ite	6.16	6.15	0.72	6.17	0.27	_	-0.17	-0.06	4.27	-0.24	-0.07	_	_		
lk	9.27	9.27	1.73	9.28	0.29	_	-0.82	-0.71	3.37	-0.79	-0.09	-	-		

et	Sum Index							Polarization Index							
	Sum	LinDisCon	LinPol	MaxInflu	Random	FJ	Sum	LinDisCon	LinPol	MaxInflu	Random	FJ	FJUpp		
nce	0.48	0.46	0.04	0.34	-0.01	0.11	2.72	5.03	7.62	5.66	0.62	2.36	10.54		
ote	0.33	0.25	-0.28	-0.33	-0.02	0.11	3.14	5.83	9.46	9.14	0.64	2.92	12.29		
ite	0.38	0.24	-0.02	0.01	0.0	_	5.66	13.35	15.86	15.58	0.7	-	-		
lk	0.49	0.29	0.02	0.02	0.0	-	13.46	25.84	28.79	28.57	0.73	-	-		

Baselines. *MaxInflu* chooses the seed nodes that maximize

the influence; *Random* selects seed nodes uniformly randomly; *FJ* [2] greedily maximizes the graph indices that allowes to change *k* innate user opinions arbitrarily much, and *FJUpp* [4] is an analytic upper bound.

• LinDis, LinPol, LinDisCon;

Regarding sandwich method. Let

- $\mu_0(S) = \mathbb{E}[2\mathbf{s}^{\mathsf{T}}\mathcal{M}(\mathbf{L})\,\Delta\hat{\mathbf{s}} + \Delta\hat{\mathbf{s}}^{\mathsf{T}}\mathcal{M}(\mathbf{L})\,\Delta\hat{\mathbf{s}}],$
- $\mu_L(S) = \mathbb{E}[2\mathbf{s}^{\mathsf{T}}\mathcal{M}(\mathbf{L})\,\Delta\hat{\mathbf{s}}],$
- $\mu_U(S) = \mathbb{E}[2\mathbf{s}^{\mathsf{T}}\mathcal{M}(\mathbf{L})\,\Delta\hat{\mathbf{s}} + \Delta\hat{\mathbf{s}}^{\mathsf{T}}\mathcal{M}(\mathbf{L})\,^U\Delta\hat{\mathbf{s}}].$

REFERENCES

- ematical Sociology, 1990.

- dynamics. In WWW, 2021.

ACKNOWLEDGEMENT

We would like to thank Aris Gionis who has been a mentor for the project, and for many valuable advices and suggestions he has provided.

[1] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence in nearly optimal time. In SODA, 2014.

[2] M. Chen and M. Z. Racz. Network disruption: maximizing disagreement and polarization in social networks. 2021.

[3] N. E. Friedkin and E. C. Johnsen. Social influence and opinions. *Journal of Math-*

[4] J. Gaitonde, J. Kleinberg, and E. Tardos. Adversarial perturbations of opinion dynamics in networks. In EC, 2020.

[5] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. *Theory OF Computing*, 2015.

[6] W. Lu, W. Chen, and L. V. Lakshmanan. From competition to complementarity: comparative influence diffusion and maximization. VLDB, 2015.

[7] W. Xu, Q. Bao, and Z. Zhang. Fast evaluation for relevant quantities of opinion