&by

BT,
FKTH®

A Viral Marketing-Based Model For Opinion Dynamics in Online Social \N\/\S P | ietions
Networks

SIJING TU - STEFAN NEUMANN ~erc SoBiaDala
isjjing, neum|j@kth.se, KTH Royal Institute ot Technology, Sweden ——— T LT

Established by the European Commission

MOTIVATION MODEL EXPERIMENTS

Spread-acknowledge Model with respect to state
transitioning and actions performed for a single node v. In
the initial round, k seed nodes are in state spread, while the
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Phenomenon: Information spreading has been taken
advantage to influnece people’s opinions, for example,

Experimental Results. We report the relative increase of each index in percent.

e Results for Marketing campaigns with k = [0.5% - n| seeds.

e fake news about vaccination, and,

. . . rest Of nodes are in State inactive. Dataset Sum Index Polarization Index
o state bots influencing the election.
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e Results for polarizing campaigns with £ = [0.5% - n| seeds
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@  state transition node 5 viral
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—* probabilistic state transition path Netscience  0.48 0.46 0.04 0.34 -0.01 011 272 5.03 7.62 5.66 0.62 236  10.54
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optimizing network indices. two-stage model:

Datasets. We obtain 16 datasets from public repositories:
Konect, , and Network Repository. The size of the
data set ranges from 0.2k to 92k nodes; 0.5k to 360k edges.

the influence; Random selects seed nodes uniformly ran-
domly; FJ [2] greedily maximizes the graph indices that
allowes to change k innate user opinions arbitrarily much,
and FJUpp [4] is an analytic upper bound.

o First stage: Performing information spread until no new
users have changed their state to spread.
e Second stage: Updating users” expressed opinions.

PROBLEM SETTING

Problem Setting: The problem sets on a weighted
undirected graph G = (V, E, w). L is the graph laplacian,
D, ., is the sum of incident edge weights.

Baselines. Maxinfiu chooses the seed nodes that maximize
Lemma.

With same seed nodes, Spread-acknowledge
Model = two-stage model on the distribution of innate

o« e . s Sum
e Each user u has an expressed opinion Zu c |0,1] f Whmh and expressed opinions. Y . — LinfntCon A - LinintCon
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Let M(L) denotes one of the matrices, let § be the final 300500 700 900 COTIAIT (qets™ W

Information Spreading: Independent Cascade Model [5]. . . e opinions. Then E[8TM (L) §] is the measure of corre-

sponding index.

e Each edge (u,v) is assigned with an influence
probability p,,, and a parameter 0 indicating the
tendency to share, seed nodes are inital spread nodes.

e At each time step, each spread node u gets one shot at
influencing its non-spread neighbor v.

o If v is ignore or acknowledge, with probability dp,,,, v
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