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MOTIVATION
Traditional viral-marketing campaigns:

Aim at reaching out to the maximum number of users;
Prioritize revenue, thus, relevance;
Reinforce users’ existing viewpoints;
Result in biased and imbalanced campaigning, leading to echo
chambers and polarization.

Influence Maximization

Reinforce echo chambers Co-exposure Maximization

Mitigate echo chambers

Main assumptions:

A centralized authority (host) responsible for allocating seed nodes to
campaigns, e.g., Facebook, Twitter;
Two campaigns supporting the opposing side of a controversial social
issue;
Propagation of campaigns follow the independent cascade (IC)
model.

Allocation problem:

Strategically allocate seed users to campaigns to maximize the
expected number of users who are co-exposed to both campaigns.

PROBLEM FORMULATION

Problem setting

A directed social network G = (V,E), with two opposing campaigns,
denoted by r and b;
Campaign-specific propagation probabilities pruv and pbuv for all graph
edges (u, v) ∈ E;
Campaigners have seed set budgets: the social-metwork host assigns
seed sets Sr and Sb with at most kr and kb seed nodes, respectively.

Possible-world semantics

We define a directed edge-colored multigraph G̃ = (V, Ẽ, p̃), for any
possible world w v G̃:

Pr[w] =
∏

i∈{r,b}

∏
(u,v)i∈w

piuv
∏

(u,v)i∈Ẽ\w

(1− piuv);

Let Iw(Sr) and Iw(Sb) denote the set of nodes reachable from Sr
and Sb, respectively, in a possible world w.
Expected number of users co-exposed to both campaigns is defined as

E[C(Sr, Sb)] =
∑
wvG̃

Pr[w]|Iw(Sr) ∩ Iw(Sb)|.

Problem (CO-EXPOSURE MAXIMIZATION (COEM)) Given two pos-
itive integers kr and kb, find two disjoint seed sets Sr and Sb, such that
|Sr| ≤ kr and |Sb| ≤ kb and E [C(Sr, Sb)] is maximized.

COEM is NP-hard to approximate within 1− 1
e + o(1) (reduction from

MAXIMUM COVERAGE);

The objective function E[C(Sr, Sb)] is not (bi-)submodular, and it can
have submodularity ratio of 0 in certain problem instances.

APPROXIMATION ALGORITHM
set-of-pairs system (E , I):

(E , I) is a set system, where E is a set of all ordered pairs of nodes,
I is a collection of subsets of E ;
Define Xr =

⋃
{r | (r, b) ∈ X} and Xb =

⋃
{b | (r, b) ∈ X};

For any set X ∈ I, the following conditions hold: (i) |Xr| ≤ kr;
(ii) |Xb| = |X| ≤ kb; (iii) Xr ∩Xb = ∅; and
(iv) |

⋃
{b | (r0, b) ∈ X}| ≤ d kbkr e, for each r0 ∈ Xr.

(E , I) is a 2d kbkr e-system.
Define the function f(X) = |I(Xr) ∩ I(Xb)|;
an equivalent univariate formulation of CoEM is:

max
X∈I

E[f(X)].

Define function g(X) = |∪(r,b)∈X(I(r) ∩ I(b))|: E[g] is submodular
and monontune. The greedy algorithm provides an approximation

guarantee
(
1 + 2d kbkr e

)−1
[3];

E[f(X)] ≤ krE[g(X)] for any X ∈ I;
It follows that the greedy algorithm for g(X) is an approximation

algorithm for the CoEM problem with guarantee
(
(1 + 2d kbkr e)kr

)−1
.

Pairs-Greedy(G = (V,E, p), (E , I).)
Initialize: XG ← ∅;
While E 6= ∅
y = argmaxx:XG∪{x}∈I E[g(XG ∪ {x})]− E[g(XG)]

E ← E \ {y}
XG = XG ∪ {y}

Return XG

FAST ALGORITHM
It is #P-hard to compute E [g(X)] for any given X .

Sample random RRP-sets (generalizing reverse-reachable sets [2]):

A random RRP-set R in possible world w is defined as:
R = {(r, b) : v ∈ Iw(r) ∩ Iw(b)}.

LetR be a collection of RRP-sets, define
FR(X) =

∑
R∈R 1[R ∩X 6= ∅]/|R|. Then:

E[g(X)] = nE[FR(X)] with randomness in v ∼ V and w ∼ G̃.
We can estimate E[g(X)] by estimating E[FR(X)].

Let Ibase ⊆ I be the set of maximal independent sets of (E , I) and let
λ = 4n/ε2(ε/3 + 2)(` lnn+ ln 2 + ln|Ibase|).

Theorem. AssumeR is such that |R| ≥ λ/OPT. Then, it holds
|nFR(X)− E[g(X)]| < ε

2
OPT, for any X ∈ Ibase, with probability at least

1− n−`/|Ibase|, and the algorithm RR-Pairs-Greedy returns an approximate
solution to the problem COEM with guanrantee

(
(1 + 2d kbkr e)

−1k−1r − ε
)

,

with probability at least 1− n−`.

To ensure |R| ≥ λ/OPT, we estimate a lower bound of OPT using
martingale theory [1, 5]

Adaptive estimation of OPT.

For the i-th iteration, define y = n/2i, and
θi = ε−22 (2ε2/3 + 2)(` lnn+ ln log2 n+ ln|Ibase|)n/y;
Execute algorithm RR-Pairs-Greedy on a sample of size θi:

if nFR(X̃G
i ) ≥ (1 + ε2) y, then set LB =

nFR(X̃G
i )

1+ε2
.

Theorem. With probability at least 1− n−`, algorithm Sampling returns a
sampleR such that |R| ≥ λ/OPT.

RR-Pairs-Greedy(R, (E , I))
Initialize: X ← ∅;
x = argmaxx:{x}∪X∈I FR(X ∪ {x})− FR(X)

While x 6= ∅
X = X ∪ {x}
x = argmaxx:{x}∪X∈I FR(X ∪ {x})− FR(X)

Return X

Sampling(G̃, λ, β, ε2, Ĩ)
Initialize: R← ∅, LB ← LB0;
for i = 1, . . . , log2 n− 1

y ← n/2i, θi = β
y

while |R| ≤ θi
R← R∪GenerateRRP-Set

X̃i ← RR-Pairs-Greedy(R, Ĩ)
if nFR(X̃i) ≥ (1 + ε2) y,

LB ← nFR(X̃i)
1+ε2

, break
θ ← λ/LB

while |R| ≤ θ
R← R∪GenerateRRP-Set

ReturnR

EXPERIMENTS
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Fix kr = 20
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Fix τ = 2

Datasets

Flixster, Last.FM, NetHEPT, WikiVote.

Methods to assign independent-cascade parameters

weighted-cascade model (prefix _wc);
homogeneous (_hom) and heterogeneous (_het) trivalency model randomly drawing from {0.1, 0.01, 0.001};

Baselines The first two baselines consider the nodes in decreasing order of out-degree.

Degree-One: kr seeds are assigned to one campaign and kb to the other;
Degree-Two: seeds are assigned in a round-robin fashion;
Maximum neighborhood intersection (MNI) solves argmaxX∈I |N ′(Xr) ∩N ′(Xb)|, where N ′(Xi) is the union
of the nodes in Xi and their out-neighbors;
BalanceExposure is the greedy method proposed by Garimella et al. [4], which we use without initial seeds.
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Results

TCEM outperforms the baselines in all the datasets under the homogeneous and heterogeneous propagation
models;
For the weighted-cascade model, the local algorithms that use out-degree information may perform better
than TCEM as observed in WikiVote dataset, although this behavior is not robust;
Memory and time increase linearly, or better.
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