Co-exposure maximization in online social networks

SIJING TU¹ · CIGDEM ASLAY² · ARISTIDES GIONIS¹ ¹ KTH Royal Institute of Technology, Sweden \cdot ² Aarhus University, Denmark

Fix $\tau = 2$

PROBLEM FORMULATION

- A directed social network G = (V, E), with two opposing campaigns, denoted by *r* and *b*;
- Campaign-specific propagation probabilities p_{uv}^r and p_{uv}^b for all graph edges $(u, v) \in E$;
- Campaigners have seed set budgets: the social-metwork host assigns seed sets S_r and S_b with at most k_r and k_b seed nodes, respectively.

Possible-world semantics

• We define a *directed edge-colored multigraph* $\tilde{G} = (V, \tilde{E}, \tilde{p})$, for any possible world $w \sqsubseteq \tilde{G}$:

$$=\prod_{i\in\{r,b\}}\prod_{(u,v)_i\in w}p^i_{uv}\prod_{(u,v)_i\in\tilde{E}\setminus w}(1-p^i_{uv});$$

- Let $I_w(S_r)$ and $I_w(S_b)$ denote the set of nodes reachable from S_r and S_b , respectively, in a possible world w.
- Expected number of users co-exposed to both campaigns is defined as

$$\mathbb{E}[C(S_r, S_b)] = \sum_{w \sqsubseteq \tilde{G}} \Pr[w] |I_w(S_r) \cap I_w(S_b)|.$$

Problem (CO-EXPOSURE MAXIMIZATION (COEM)) *Given two positive integers* k_r *and* k_b *, find two disjoint seed sets* S_r *and* S_b *, such that* $|S_r| \leq k_r$ and $|S_b| \leq k_b$ and $\mathbb{E}[C(S_r, S_b)]$ is maximized.

COEM is NP-hard to approximate within $1 - \frac{1}{e} + o(1)$ (reduction from MAXIMUM COVERAGE);

The objective function $\mathbb{E}[C(S_r, S_b)]$ is not (bi-)submodular, and it can have submodularity ratio of 0 in certain problem instances.

- $(\mathcal{E}, \mathcal{I})$ is a set system, where \mathcal{E} is a set of all ordered pairs of nodes, \mathcal{I} is a collection of subsets of \mathcal{E} ;
- Define $X_r = \bigcup \{r \mid (r, b) \in X\}$ and $X_b = \bigcup \{b \mid (r, b) \in X\}$; • For any set $X \in \mathcal{I}$, the following conditions hold: (i) $|X_r| \leq k_r$;

- (iv) $|\bigcup \{b \mid (r_0, b) \in X\}| \leq \lfloor \frac{k_b}{k_m} \rfloor$, for each $r_0 \in X_r$. • $(\mathcal{E}, \mathcal{I})$ is a $2 \lceil \frac{k_b}{k_b} \rceil$ -system.
- Define the function $f(X) = |I(X_r) \cap I(X_b)|$; an equivalent univariate formulation of CoEM is:
- Define function $g(X) = |\cup_{(r,b)\in X} (I(r) \cap I(b))|$: $\mathbb{E}[g]$ is submodular and monontune. The greedy algorithm provides an approximation
- guarantee $\left(1+2\left\lceil\frac{k_b}{k_r}\right\rceil\right)^{-1}$ [3]; • $\mathbb{E}[f(X)] \leq k_r \mathbb{E}[g(X)]$ for any $X \in \mathcal{I}$;
- It follows that the greedy algorithm for g(X) is an approximation algorithm for the CoEM problem with guarantee $\left((1 + 2 \lceil \frac{k_b}{k_r} \rceil) k_r \right)$

🔫 BalanceExposure ►► Degree-One Degree-Two

Datasets

• Flixster, Last.FM, NetHEPT, WikiVote.

Methods to assign independent-cascade parameters

- *weighted-cascade model* (prefix _wc);
- homogeneous (_hom) and heterogeneous (_het) *trivalency model* randomly drawing from {0.1, 0.01, 0.001}; **Baselines** The first two baselines consider the nodes in decreasing order of out-degree.

- Degree-One: k_r seeds are assigned to one campaign and k_b to the other;
- Degree-Two: seeds are assigned in a round-robin fashion;
- Maximum neighborhood intersection (MNI) solves $\arg \max_{X \in \mathcal{I}} |N'(X_r) \cap N'(X_b)|$, where $N'(X_i)$ is the union
- of the nodes in X_i and their out-neighbors; • BalanceExposure is the greedy method proposed by Garimella et al. [4], which we use without initial seeds.

Results

- models;
- Memory and time increase linearly, or better.

APPROXIMATION ALGORITHM

• *set-of-pairs* system $(\mathcal{E}, \mathcal{I})$:

(ii) $|X_b| = |X| \le k_b$; (iii) $X_r \cap X_b = \emptyset$; and

 $\max_{X \in \mathcal{I}} \quad \mathbb{E}[f(X)].$

Pairs-Greedy(G = (V, E, p), $(\mathcal{E}, \mathcal{I})$.) • Initialize: $\mathcal{X}^G \leftarrow \emptyset$; • While $\mathcal{E} \neq \emptyset$ • $y = \operatorname{arg\,max}_{x:X^G \cup \{x\} \in \mathcal{I}} \mathbb{E}[g(X^G \cup \{x\})] - \mathbb{E}[g(X^G)]$ • $\mathcal{E} \leftarrow \mathcal{E} \setminus \{y\}$ • $X^G = X^G \cup \{y\}$ • Return X^G

• TCEM outperforms the baselines in all the datasets under the homogeneous and heterogeneous propagation

• For the weighted-cascade model, the local algorithms that use out-degree information may perform better than TCEM as observed in WikiVote dataset, although this behavior is not robust;

FAST ALGORITHM

It is #**P**-hard to compute $\mathbb{E}[g(X)]$ for any given *X*. Sample random RRP-sets (generalizing *reverse-reachable* sets [2]): • A random RRP-set *R* in possible world *w* is defined as: $R = \{ (r, b) : v \in I_w(r) \cap I_w(b) \}.$ Let \mathcal{R} be a collection of RRP-sets, define $F_{\mathcal{R}}(X) = \sum_{R \in \mathcal{R}} \mathbb{1}[R \cap X \neq \emptyset] / |\mathcal{R}|.$ Then: • $\mathbb{E}[g(X)] = n \mathbb{E}[F_{\mathcal{R}}(X)]$ with randomness in $v \sim V$ and $w \sim \tilde{G}$. • We can estimate $\mathbb{E}[g(X)]$ by estimating $\mathbb{E}[F_{\mathcal{R}}(X)]$. Let $\mathcal{I}_{base} \subseteq \mathcal{I}$ be the set of maximal independent sets of $(\mathcal{E}, \mathcal{I})$ and let $\lambda = 4n/\epsilon^2 (\epsilon/3 + 2)(\ell \ln n + \ln 2 + \ln |\mathcal{I}_{base}|).$ **Theorem.** Assume \mathcal{R} is such that $|\mathcal{R}| \geq \lambda/\text{OPT}$. Then, it holds $|nF_{\mathcal{R}}(X) - \mathbb{E}[g(X)]| < \frac{\epsilon}{2} \text{ OPT, for any } X \in \mathcal{I}_{base}, \text{ with probability at least}$ $1 - n^{-\ell} / |\mathcal{I}_{base}|$, and the algorithm RR-Pairs-Greedy returns an approximate solution to the problem COEM with guarantee $\left((1+2\lceil \frac{k_b}{k_r}\rceil)^{-1}k_r^{-1}-\epsilon\right)$, with probability at least $1 - n^{-\ell}$. • To ensure $|\mathcal{R}| \geq \lambda/\text{OPT}$, we estimate a lower bound of OPT using martingale theory [1, 5] Adaptive estimation of OPT. • For the *i*-th iteration, define $y = n/2^i$, and $\theta_i = \epsilon_2^{-2} (2\epsilon_2/3 + 2) (\ell \ln n + \ln \log_2 n + \ln |\mathcal{I}_{base}|) n/y;$ • Execute algorithm RR-Pairs-Greedy on a sample of size θ_i : if $nF_{\mathcal{R}}(\tilde{X}_i^G) \ge (1 + \epsilon_2) y$, then set $LB = \frac{nF_{\mathcal{R}}(\tilde{X}_i^G)}{1 + \epsilon_2}$. **Theorem**. With probability at least $1 - n^{-\ell}$, algorithm Sampling returns a sample \mathcal{R} such that $|\mathcal{R}| \geq \lambda/\text{OPT}$. RR-Pairs-Greedy(\mathcal{R} , (\mathcal{E} , \mathcal{I})) • Initialize: $X \leftarrow \emptyset$;

REFERENCES

- network. In ICDM, 2018.
- In SODA, 2014.

- SIGMOD, 2015.

• $x = \arg \max_{x:\{x\}\cup X\in\mathcal{I}} F_{\mathcal{R}}(X\cup\{x\}) - F_{\mathcal{R}}(X)$ • $x = \arg \max_{x: \{x\} \cup X \in \mathcal{I}} F_{\mathcal{R}}(X \cup \{x\}) - F_{\mathcal{R}}(X)$

```
• Initialize: \mathcal{R} \leftarrow \emptyset, LB \leftarrow LB_0;
• for i = 1, ..., \log_2 n - 1
      • y \leftarrow n/2^i, \theta_i = \frac{\beta}{n}
             • \mathcal{R} \leftarrow \mathcal{R} \cup \text{GenerateRRP-Set}
       • \tilde{X}_i \leftarrow \text{RR-Pairs-Greedy}(\mathcal{R}, \tilde{I})
      • if n F_{\mathcal{R}}(X_i) \ge (1 + \epsilon_2) y,
            • LB \leftarrow \frac{n F_{\mathcal{R}}(\tilde{X}_i)}{1+\epsilon_2}, break
      • \mathcal{R} \leftarrow \mathcal{R} \cup \text{GenerateRRP-Set}
```

[1] C. Aslay, A. Matakos, E. Galbrun, and A. Gionis. Maximizing the diversity of exposure in a social

[2] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence in nearly optimal time.

[3] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing, 2011. [4] K. Garimella, A. Gionis, N. Parotsidis, and N. Tatti. Balancing information exposure in social networks. In NeurIPS, 2017.

[5] Y. Tang, Y. Shi, and X. Xiao. Influence maximization in near-linear time: A martingale approach. In