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Abstract

Social media has created new ways for citizens to stay informed on societal matters
and participate in political discourse. However, with its algorithmically-curated and
virally-propagating content, social media has contributed further to the polarization
of opinions by reinforcing users’ existing viewpoints. An emerging line of research
seeks to understand how content-recommendation algorithms can be re-designed
to mitigate societal polarization amplified by social-media interactions. In this
paper, we study the problem of allocating seed users to opposing campaigns: by
drawing on the equal-time rule of political campaigning on traditional media,
our goal is to allocate seed users to campaigners with the aim to maximize the
expected number of users who are co-exposed to both campaigns. We show that
the problem of maximizing co-exposure is NP-hard and its objective function is
neither submodular nor supermodular. However, by exploiting a connection to
a submodular function that acts as a lower bound to the objective, we are able
to devise a greedy algorithm with provable approximation guarantee. We further
provide a scalable instantiation of our approximation algorithm by introducing
a novel extension to the notion of random reverse-reachable sets for efficiently
estimating the expected co-exposure. We experimentally demonstrate the quality
of our proposal on real-world social networks.

1 Introduction

Social media have created new ways for citizens to stay informed and participate in societal discourse.
However, despite enabling users to access a variery of information, social media has been linked to
increased societal polarization [22], by amplifying the phenomenon of echo chambers [4, 27]], where
users are only exposed to information from like-minded individuals, and of filter bubbles [35} 37],
where algorithms only present personalized content that agrees with the user’s viewpoint. To address
these concerns, an emerging line of research seeks to understand how content-recommendation
algorithms can be re-designed to mitigate societal polarization amplified by social-media interactions.
Recent work includes developing methods for balancing [25] and diversifying [3] information
exposure, while considering the tendency of the recommended content to spread through the online
social network under a stochastic information propagation model.

In this paper, we take a step in this direction and consider the problem of breaking filter bubbles
through the information-propagation lens. Following related work that has considered the problem
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of viral marketing for multiple items in online social networks [[1} 2} [12} 20} 21} [29]], we consider a
setting with a centralized authority (host) that is responsible for allocating seed nodes to campaigns.
We assume that two campaigns, supporting opposing sides of a controversial social issue, approach
the host to benefit from its viral-marketing service. By drawing on the equal-time rule of political
campaigning in the pre-digital era, our aim is to devise a seed-set allocation framework so that the
expected number of users who are exposed to both campaigns, through the propagation of information
in the social network, is maximized.

In a traditional viral-marketing setting, both the campaigners and host would be interested in reaching
out to the maximum number of people without any consideration to co-exposure [[1, 2|12 20L 21} [29].
However, the new era of fake news and polarization has brought to the fore the fact that, algorithmic
principles that work well for commercial advertising have unintended consequences when applied
to political advertising, due to their commercial focus that prioritize revenue, resulting in biased
and imbalanced campaigning. Such adverse effects have led to social-media platforms being held
accountable for having political bias in their services. In some cases, popular social media have
stopped their political advertising service at the expense of losing revenue. Thus, we assume the host
has an incentive to respect balance and objectivity considerations, due to enforced legislations or
social conscience.

As a step of addressing the aforementioned challenges, we formally introduce co-exposure maximiza-
tion (COEM) as the problem of assigning seed sets to each campaign such that the expected number
of users co-exposed to campaigns under a stochastic information propagation model is maximized.
We show that the COEM problem is NP-hard and NP-hard to approximate within a factor better
than 1 — 1/e. Although the co-exposure function is neither submodular nor supermodular, we propose
a greedy algorithm that exploits a connection to a submodular function that acts as the lower bound
of the objective and obtain bounded approximation guarantees. Due to the #P-hardness of expected
spread computation, we introduce a novel extension to the notion of random reverse-reachable sets [9]]
for efficiently estimating the expected co-exposure. Finally, we experimentally evaluate our algorithm
on several real-world datasets and demonstrate its superiority over several baselines.

Omitted proofs and implementation are provided as supplementary material.

2 Related work

Our work relates to the emerging line of research on breaking filter bubbles in social media through
information-propagation lens. There have been a number of studies on the effects of “echo cham-
bers” [4} [26] and “filter bubbles” [4} [17, 22| 37]. In particular, it has been observed that news
stories containing opinion-challenging information spread less than other news [26]] and filtering of
content by a social-network owner to increase user engagement can significantly increase societal
polarization [17]. Recent approaches to breaking filter bubbles focus on making recommendations
to individuals of opposing viewpoints [23, 24} 31], targeting users so as to reduce the polarization
of opinions and bridge opposing views by considering opinion-formation models [16, 33| 34], or
addressing these issues under information-propagation models [3}[25]] as we do in our work.

Aslay et al. [3] study the related problem of diversifying exposure to information that is propagating in
a social network. Their problem formulation assumes that the leanings of users and news articles are
quantified in the interval [—1, 1] and are known. The goal is to find an assignment of articles to seed
users to maximize the total diversity over all users in the network. The diversity of a user is defined
to be a function that takes as input the leanings of the set of news articles that the user is exposed as
well as the learning of the user. Therefore, users who are exposed to only one article, which has a
different leaning from their own, still contribute to the value of the diversity objective. Translating
this formulation to our setting, by considering two articles with leanings —1 and 1, implies that their
objective function can potentially achieve a relatively high value while the co-exposure being equal
to 0. Thus, their work does not guarantee that co-exposure is maximized. Moreover, Aslay et al.
[3] also propose an extension to random reverse-reachable sets [9] for scalable estimation of their
objective function. For this task, they sample random sets defined over user-article pairs while our
sampling domain is user-user pairs as we explain in Section[5] Due to the difference in the objective
functions, hence, the estimation task, the sample-complexity results and the sample of random sets
obtained for one problem cannot be used to solve the other.



The work most related to ours is the one by Garimella et al. [25], in which they consider a similar
information-propagation setting with two opposing campaigns. Different from our work, they assume
a set of initial seed sets to be given for each campaign and aim to recruit additional seed sets to
maximize the expected number of users exposed either to both or none of the campaigns. The seed
sets are not required to be disjoint, which makes their setting less realistic, as the seeds of a campaign
are more likely to take one-sided stance. Furthermore, among the three algorithms they propose, only
one provides an approximation guarantee for the setting where campaigns have different propagation
probabilities, while the other two algorithms rely on limiting assumptions, such as, campaigns having
same propagation probabilities and choosing common seeds for both campaigns. Another difference
with the current work is that the co-exposure function we consider here is arguably a more natural
choice for reducing polarization, as it accounts solely for nodes that are informed by both sides of a
controversial issue. Finally, we note that Garimella et al. [25] use computationally prohibitive Monte
Carlo simulations while we propose an efficient co-exposure estimation framework.

3 Problem definition

Ingredients. The input to our problem consists of: (7) a directed social graph G = (V, E) with
|V| = n nodes and | E| = m edges, where a directed edge (u, v) indicates that node v follows node u,
thus, v can see and propagate posts by u; (7¢) two campaigners, campaigning for opposing sides of a
controversial issue, with their campaigns hereafter referred as campaign r (red) and campaign b (blue),
and their seed set budgets denoted by &, € Z and k;, € Z_, respectively; and (¢i%) campaign-specific
propagation probabilities p”, and p%,, for all (u,v) € E, representing the probability that a post
from node v will propagate to node v in the respective campaigns.

Given the budgets &, and k;, of the campaigners, the host is in charge of selecting disjoint seed sets
S, and Sy, for advertiser r and b, respectively, while respecting their seed set budgets, i.e., |.S,.| < k.
and |Sp| < k. The goal, on a high level, is to select seeds for the two campaigns, within the allocated
budgets, so as to maximize the number of nodes in the network who are exposed to both campaigns.

Propagation model. We assume that the propagation of each campaign follows the independent-
cascade (IC) model [28], each with campaign-specific propagation probabilities p’, and p®,, for all
directed edges (u,v) € E. We assume that the propagation of a campaign through the edge (u, v) is
independent of v’s activation status on the other campaign. This way, we are able to take into account
the tendency of nodes to adopt information they agree or disagree with, and model a realistic setting
where users can adopt more than one campaign. This is in contrast to the competitive propagation
models that assume that a user can adopt only one campaign [7, 10} [15, 41} [32]]. Thus, once a node
u becomes active at time ¢ on campaign r (respectively, b), it has one shot to activate each inactive
out-neighbor v at time ¢ + 1, with probability p” (respectively, p, ), independently of the history
thus far. We say that a node u is exposed to a specific campaign if w is activated on that campaign,
either by an in-neighbor that is active on the same campaign, or by directly being a seed node of the
campaign.

Possible-world semantics. Given any two sets of seeds S, and S}, for the two campaigns, a single
possible world represents an outcome of the stochastic propagation processes starting from the nodes
in S, and S,. To formalize the possible-world semantics of our problem, we adopt the edge-colored
multigraph representation introduced by Aslay et al. [3]]. Accordingly, we define a directed edge-
colored multigraph G = (V, E, p) from G = (V, E), by creating a parallel edge (u,v); associated
with color ¢; and probability p’,,, for each campaign i € {r,b}. This way, G can be regarded as a
probability distribution over all the possible subgraphs of (V, E) The probability of a possible world
w C @G, obtained by sampling each (u, v); independently with probability p?,,, is thus given by
i€{r,b} (u,v)i€w (u,v); €E\w

Let I,,(S,) (respectively, I,,(Sp)) denote the set of nodes that are reachable from the nodes in .S,
(respectively, Sp) in w, by using the edges associated with color ¢, (respectively, ¢;). Let also
Cw(Sr, Sp) = [1,(Sr) N L, (Sp)| denoted to set of nodes co-exposed to both campaigns in w. Then,
the expected number of nodes co-exposed to both campaigns is given by

E[C(Sy, Sp)] = > Pr{w] [1,(Sy) N 1,(Sb)]-

wCG



We are now ready to formally define the problem we study in this paper.

Problem 3.1 (CO-EXPOSURE MAXIMIZATION (COEM)). Given a directed social graph G =
(V, E), two opposing campaigns v and b, campaign-specific propagation probabilities p., and p’.,,
Sor all (u,v) € E, and two positive integers k, and ky, find two disjoint seed sets S, and Sy, such
that |S,| < k. and |Sy| < ky, and the expected number of nodes co-exposed to the r and b campaigns
is maximized. That is,

maximize [E[C(S,,Sy)]

5,5, CV

subjectto S, NSy, = 0,
|Sr| < kra
|Sb| < kyp.

4 Theoretical analysis

In this section, we establish the complexity of the COEM problem, and we theoretically analyze its
objective function. We start by showing that COEM is NP-hard to approximate within a factor better
than 1 — 1/e.

Theorem 4.1. It is NP-hard to approximate the COEM problem within a factor better than 1 — %

Next we proceed to analyze the properties of the objective of the COEM problem.

Our first observation is that when the seed set of one of the campaigns is fixed, e.g., S,., the objective
function E[C(S, Sp)] is submodular in Sy, and vice versa. This observation follows from the
submodularity of E[I] under the independent-cascade model [28]. However, the COEM problem
requires to evaluate E[C'(S,., Sp)] over the pair of seed sets. Bi-submodularity [38][36] extends the
concept of submodularity to bi-set functions, i.e., set functions with two arguments. We first show
that E[C], which is a bi-set function, is not bi-submodular.

Lemma 4.2. The function E[C] : 2V x 2V — Z~ is a non-decreasing bi-set function, which is not
bi-submodular.

In the rest of the section, we will first provide an equivalent univariate formulation of our objective,
by defining a function f : 26 — Z> on the ground set £ of ordered pairs of nodes. We will then
show that E[f] is neither submodular nor supermodular.

For non-decreasing functions that are not submodular, the greedy algorithm, although being useful in
practice, might not provide theoretical performance guarantees. However, in cases that the function
is close to being submodular, the performance of the greedy algorithm tends to improve. The
deviation of a function from submodularity is typically captured by the submodularity ratio of the
function [18}[19]. This observation has been used in the literature to show that the greedy algorithm
enjoys a tight approximation guarantee of ’yi (1 — e~7<7) for maximizing a non-submodular function
subject to a cardinality constraint, where 7, and -, are the submodularity ratio and the generalized
curvature of the non-submodular function, respectively [8].

We note that such efforts are dedicated to approximating a non-submodular set function under a
cardinality constraint. As we will see next, the constraints of our problem form an independence
system on the ground set £ of ordered pairs of nodes. We also note that E[ f] has a submodularity ratio
of 0 for many problem instances, limiting the possibility of obtaining a bounded approximation when
greedily maximizing the objective function. Hence, instead, we will exploit a connection of E[f] to a
submodular function, that acts as its lower bound, to obtain bounded approximation guarantees.

We now start formalizing our approach built on a set system defined on ordered pairs of nodes, which
we name as set-of-pairs system, and establish its equivalence to the pairs of seed sets.

Let (S}, S;) denote the optimal pair of seed sets maximizing the expected co-exposure. Being a
non-decreasing function, the maximum value of the objective function is attained when k,. and k; seed
nodes are selected for campaigns b and r, respectively. This implies that | S| = &, and |S}| = k.

Without loss of generality we assume that k. < kp. Let O1 = {(S,,Sp) | S- NSy = 0,]S,| =
kv, |So| = kb, S, Sy, C V'} denote the set of feasible seed set pairs of maximal size. Notice that

(S}, S;) € Oq. For any (S, Sp) € Oy, it follows that 1 < % < [Z—f] This implies that we can



construct a set of pairings of the nodes in .S;. and S}, such that each element in .S;. corresponds to at
least one and at most [%1 elements in Sj,.

Let £ = {V x V}\ {(v,v) | v € V} denote a ground set of ordered pairs, where (u,v) € &
represents the pairing of a node u, selected as a seed node for campaign r with a node v selected as a
seed node for campaign b. We now formally define ser-of-pairs system defined on £, and establish its
relation to O1.

Definition 4.1 (Set-of-pairs system). Let (€,Z) be a set system where £ = {V xV\{(v,v) |v eV}
is the ground set and T is a collection of subsets of €. For any X € T, let X, = |J{r | (r,b) € X'}
and Xy = J{b | (r,b) € X}. We say that (£,T) is a set-of-pairs system if for any set X € T the
Jollowing conditions hold: (i) | X,| < k.; (ii) | Xp| = | X| < ke, (iii) X, N Xy = 0; (iv) for each
ro € Xp, [U{D | (ro,b) € X} < [32].

Lemma 4.3. Let Oy = {(Xr,Xb) | X e I} Then O1 C Os.

Let f : 26 — Z> be a function defined as f(X) = |I(X,) N I(X})| where I(X,.) and I(X}) are
the random variables representing the set of the nodes exposed to campaigns 7 and b, respectively.
Since (S, S;) € Oy, it follows from Lemma[4.3|that (S}, S;) € O2. Thus, the COEM problem can
be equivalently formulated as

max  E[f(X)]. (1)

Xer

Lemma 4.4. The function f : 2 — 7 defined above is a non-decreasing set function, which is
neither submodular nor supermodular.

Next, we give a formal definition of the submodularity ratio and formalize the problem instances in
which v, = 0.

Definition 4.2 (Submodularity ratio [8]]). The submodularity ratio of a non-negative set function F'
is the largest scalar ~, such that

> F(Lu{e})-F(L) >~ (F(LUX) - F(L)), forall L,X C €.
eeX\L

The set function F' is submodular if and only if v, = 1.

For each u € V, let o(u) denote the set of nodes that node « can reach in G. Assume that there exists
at least two ordered pairs (r1,b1) and (72, bs) in &, where o(r;) N o(b;) = 0, for i = 1,2, and there
existi,j € {1,2}, with ¢ # j, such that o(r;) N o (b;) # 0. Let L = @ and X = {(r1,b1), (r2, b2)}.
Notice that, in any realization of the stochastic propagation process starting from the seed sets X,
and X;, we have f({(r;,b;)}) = 0, hence, E[f({(r4,b;)})] = 0. Moreover, given our assumption
that o(r;) N o(b;) # 0 in at least one of the cross pairings, we have E[f(X)] > 0, yielding
0> ’YTE[f(X)]’ thus, v, = 0.

We have shown that E[f(X)] is not submodular, with a submodularity ratio of 0 in some problem
instances. We now introduce a function g : 25 — Zx, defined as g(X) = [U.p)ex (1(r) N 1(D))],
which we show is submodular and differs from f(X) within a multiplicative factor in any realization
of the stochastic propagation process.

Lemma 4.5. The function g : 2° — 7 defined above is a submodular non-decreasing set function.

Notice that submodularity of g implies submodularity of E[g] since non-negative linear combination
of submodular functions is also submodular. We now prove the relation between the optimal solutions
maximizing E[f] and E[g] subject to X € Z.

Lemma 4.6. Let X° = argmaxxc7 E[g(X)], X* = argmaxxer E[f(X)], and k, < ky. Then
E[f(X*)] < k. E[g(X°)].

Lemma4.6] suggests that any algorithm that provides an approximation guarantee for the problem of
maximizing E[g] over the set system (&, Z), provides also a bounded approximation guarantee for
the COEM problem. We now study the properties of the set-of-pairs system (€, Z). We first provide
the preliminary definitions.

Definition 4.3 (Independence system). A set system (£,7) is an independence system if T is non-
empty and satisfies the downward-closure property, i.e., X € ZTandY C X implyY € T.
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Algorithm 1: Pairs-Greedy

Input :G = (V,E,p), (£,I).

Output : X¢

X¢ 0

while £ # () do
y = argmax,, you(ayez El9(XC U {z})] - E[g(X )]
&€&\ {y}
X¢=X0{y}

end

return X ¢

Definition 4.4 (p-system [[11]]). An independence system (€,T) is said to be a p-system, if

Max.yj.Jisabase of Y |J|
max —; <p,
YCE& MIN . Jisa base of Y |<]|

where any subset J of Y is a base of Y if J € Zand foralle € Y \ Jitis JU{e} ¢ T.

We now show that (£, Z) is an independence system.

Lemma 4.7. The set-of-pairs system (€,T) is an independence system.

Lemma 4.8. The independence system (€,T) is a 2[ £ ]-system.

Combining the result of Lemma that (£,Z)isa 2 (%W -system with the monotonicity and sub-
modularity of E[g], the greedy algorithm (Algorithm 1)) provides an 1+21[ oy

T
Let X C & denote the solution returned by Algorithm [1} Let also X& = J{r | (r,b) € X}
and X& = (J{b | (r,b) € X}. We now show that, the pair (X, XF) of seed sets provides

1/((1+2 [%] )k )-approximation to the optimal solution of the COEM problem.

Theorem 4.9. Let X be the solution returned by AlgOrithmand let ng ={(r,b)|r € XE,be
X ,f; } denote all possible ordered pairings between XS and X bG . Then

1 .
E[f(X§))) > TR )

-approximation [11].

5 Algorithms

Efficient implementation of the greedy algorithm is a challenge as the computation of the expected
spread E[I(.S)] for any given .S is a #P-hard problem under the independent-cascade model [14]. A
common practice is to estimate the expected spread using Monte Carlo simulations [28]. However,
accurate estimation requires a large number of Monte Carlo simulations, which is prohibitively
expensive, and results in a time complexity of O(kymn?r) when using r rounds of Monte Carlo
simulations in Algorithm T}

Considerable effort has been devoted to developing scalable influence-maximization algorithms.
Borgs et al. [9] made a breakthrough by introducing the notion of sampling reverse-reachable (RR)
sets, and proposed a quasi-linear time randomized algorithm for the influence-maximization problem.
Tang et al. improved it to a near-linear time randomized algorithm, called two-phase influence
maximization (TIM) [39]], and subsequently proposed IMM [40] with a tightened lower bound on the
sample size required to estimate the expected spread with high probability.

Random RR-sets are critical for efficient estimation of the expected influence spread. However,
they are designed for the standard influence-maximization problem. In this section, we introduce a
non-trivial generalization of RR-sets, which we name reverse-reachable pairs sets (RRP-sets), and
accordingly devise an estimator for accurate estimation of E[g(X)] for any X € T.

Definition 5.1 (Random reverse-reachable pairs (RRP) set). Let w T G be any possible world and
let v € V be a node uniformly sampled at random. A random RRP-set R C & is defined as the set of



ordered pairs that can reach node v via the colored edges in w, i.e.,
R={(r,b):v e I,(r)NIL,()}.

A RRP-set can be sampled efficiently by first sampling a node v € V uniformly at random, then
performing a randomized breadth-first search starting from v in G as follows. Let N**(v) denote
the set of in-neighbors of node v in G. Initially, for each campaign ¢ € {r, b}, create an empty
breadth-first search queue Q;, and for each 2 € N**(v), insert z into Q; with probability p,. The
following loop is executed until @Q); is empty: dequeue a node v from ); and examine its incoming
edges of color i: for each edge (w,u);, insert w into @; with probability p’,,,. Let A; denote the set
of nodes dequeued from ();. Then, a RRP-set R is constructed from the set of all possible ordered
pairings between A, and Ay, i.e., R = {(r,b) | r € A.,b € Ap}.

Let R denote a sample of random RRP-sets generated by the procedure described above. Given
asample R, let Fr(X) = Y pcp 1[RN X # 0]/|R| denote the fraction of RRP-sets that have

non-empty intersection with X. Next, we show that, for any given X C &, we can estimate E[g(X)]
by estimating E[Fr (X)]. We have the following.

Lemma 5.1. For any X C &, we have E[g(X)] = nE[Fr(X)], where the expectation is taken over
the randomness inv ~ V and w ~ G.

We now present our algorithm TCEM (two-phase co-exposure maximization) that provides an
approximate-greedy solution X€ to the problem of maximizing E[g(X)] using a sample R. The
TCEM algorithm operates in two phases: (¢) sampling phase, which determines the size of the sample
required for accuracy of estimations and generates the sample R; (i7) the greedy pair selection phase,
where, at each iteration, a feasible pair maximizing Fr (X¢ U {z}) — Fr(X%) is added to the
solution X €.

Next we show that, given a sample R of random RRP-sets from which we can obtain accurate

estimations of E[Fz (X)] for all X € Z with high probability, we can solve COEM accurately with
high probability. Let OPT = E[g(X?)], and Zyqs. C Z be the maximal independent sets of (£, 7).

Theorem 5.2. Assume the greedy pair selection phase of TCEM receives as input a sample R of
random RRP-sets such that

[nFr(X) ~ Elg(X)]| < 5 OPT @)

holds for any X € Tyas. with probability at least 1 — n~%/|Tyqse|. Then, the algorithm TCEM

1
(1+2[ 22Dk,
1 —n~% and runs in time O(Y_ p.x|R)).

Lemma 5.3. The size of Zyase satisfies |Lyase| < (kr(:LJrl)) %, where T = [Z—ﬂ The bound
is tight when ky mod k,. = 0.

returns an ( — € | -approximate solution to the COEM problem, with probability at least

Let A = 2 (£ 4+ 2) (¢Inn + In2 + In|Zyas|) We now give a lower bound on the size of R so that
Equation () holds for all X € Zp,se.

Lemma 5.4. Let R be such that |R| > ﬁ. Then, Equation holds for all X € Tyqse with
¢

probability at least 1 — n~".
From the previous lemma, R should satisfy |R| > \/OPT, however OPT is unknown and NP-
hard to compute. To circumvent this problem, we follow the approach employed in previous work
[3,140] and exploit a connection to the martingale theory to adaptively estimate a lower bound of
OPT by performing a statistical test B(y). We perform the test iteratively on O(log, n) values of
y=mn/2,n/4,...,1, such that, if OPT < y then B(y) = false.

We now give the details of the sampling phase of TCEM which, by employing the statistical test,
identifies a lower bound LB and generates the final sample on which the approximate greedy solution
XE will be computed. The algorithm starts by initializing R = (), a less stringent error parameter
€2 > €, and a naive lower bound LB = 1. Then, it enters a for-loop with at most log, n iterations.
In the i-th iteration, the algorithm computes y = n/2% and derives

1 262
0; = = ( + 2) (LInn + Inlogy n + In|Zpese|)

n
2 3 y'



Then the algorithm inserts more random RRP-sets into R until |[R| > 6; and greedily computes a
solution X on this sample. If R satisfies the following stopping condition

nFr(XE) > (1+e)y, 3)

v G
the algorithm sets LB = Mﬁi(il) and terminates the for-loop. If this is the case, the algorithm

generates more random RRP-sets into R until [R| > A/LB and returns R as input to the greedy pair
selection phase that computes X . Otherwise, the algorithm proceeds in the (i + 1)-th iteration. If
after O(log, n) iterations the algorithm cannot set LB, then the naive lower bound is used. Our main
result is the following.

Theorem 5.5. With probability at least 1 —n~*, TCEM returns a sample R such that |R| > \/OPT.

6 Experimental evaluation

We evaluate our method against different baselines on real-world networks. We measure the co-
exposure size as a function of the available budget. We also evaluate the scalability of our method.
The confidence and accuracy parameters are set to £ = 1 and € = 0.2. Our experiments are performed
on a server with a 2 x 10 core Xeon E5 2680 v2 2.80 GHz processor, with 256 GB memory.

Datasets. We use the following networks: Flixster [6]], Last.FM [5]], NetHEPT [13]], and WikiVote
[30]]. Basic statistics of these networks are reported in the supplementary. For each network, we
use three different methods to assign independent-cascade parameters. First, we use the weighted-
cascade model [28]], in which the probability of edge (u,v) is set to 1/d(v) for both campaigns,
where d(v) is the in-degree of node v. The resulting networks are denoted by adding prefix _wc, e.g.,
Flixster_wc. As second and third, following [25]], we devise homogeneous and heterogeneous setting
using arbitrary edge probabilities: campaign-specific propagation probabilities on an edge are set to
be equal in the former while they differ in the latter setting. For all the networks except Flixster, we
use the trivalency model [14] to assign the homogeneous and heterogeneous edge probabilities by
drawing randomly from {0.1,0.01,0.001} for each edge. For Flixster, we use probabilities learned
in [6]]. The resulting networks are denoted by adding the prefixes _het and _hom, e.g., Flixster_het
and Flixster_hom.

Baselines. We compare our method, TCEM, with four baselines: Degree-One, Degree-Two, MNI
and BalanceExposure. The first two baselines consider the nodes in decreasing order of out-degree.
For Degree-One, k, seeds are assigned to one campaign and k;, to the other; for Degree-Two seeds
are assigned in a round-robin fashion. MNIE] solves arg maxxez|N'(X,) N N'(Xp)|, where N'(X;)
is the union of X; and X;’s out-neighbors, and Z is given in Definition 4.1} BalanceExposure is the
greedy method proposed by Garimella et al. [25], which we use without initial seeds.

Budget selection. Our method takes as input seed budgets &, and k3, while BalanceExposure takes
as input a single budget &, and returns optimal k&, and k;, for that k. To ensure a fair comparison, we
first execute BalanceExposure with varying & = 50, 100, 150, 200, and use the returned values &,
and k; as input for the other methods.

Results. Co-exposure results for different networks are shown in Figure[I] We observe that TCEM
outperforms the baselines in most networks, while different independent-cascade models and network
topologies have significant impact on performance. For heterogeneous and homogeneous independent-
cascade models, TCEM is the best-performing method. For the weighted-cascade model, the three
local algorithms that use out-degree information can perform slightly better than TCEM; this happens
for instance in WikiVote_wc. This result is consistent with the empirical observation that nodes with
high out-degree obtain large expected spread under the weighted-cascade model [28]], resulting in
large expected co-exposure values. However, such local baselines do not have robust performance as
they are all outperformed by TCEM when different independent-cascade parameters are used. We
observe that the BalanceExposure algorithm is consistently outperformed by all the algorithms in
all the settings.

In Figure 2| we report the memory consumption and running time of TCEM, as a function of k,. + ky,
for the Flixster_het dataset. We fix 7 = 2 and k,, = 20. We observe that memory and time increase
linearly, or better, with k,. + kp. As an indicative performance result, when k&, = 20 and k; = 200,
TCEM requires 48 GB and runs in 150 minutes.

'Short for maximum neighborhood intersection.
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Figure 1: Co-exposure results for different networks for varying k, + kp.
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Figure 2: Memory consumption and running time of TCEM on the Flixster_het.

7 Conclusions

In this paper, we address the problem of maximizing co-exposure in social networks. We show that
the problem is NP-hard and the objective function is neither submodular nor supermodular. By
exploiting a connection to a submodular function that acts as a lower bound to the objective, we
devise an approximation algorithm with provable guarantee. We further propose TCEM, a scalable
instantiation of our approximation algorithm that can efficiently estimate the expected co-exposure.

Several directions for future work open ahead. First, it would be interesting to improve the approx-
imation guarantee for the problem we define. Second, we would like to extend our approach to
account for the social advertising setting [2] in which the advertisers, with a limited monetary budget,
are required to pay a monetary amount to the host for each engagement to their virally propagating
campaign.
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Broader impact

Our work addresses the problem of maximizing co-exposure of information in online social networks
via viral-marketing strategies. We are interested in situations where opposing campaigns are prop-
agated in different parts of a social network, with users in one side not being aware of the content
and arguments seen on the other side. Although, the focus of our work is mainly theoretical, and a
number of modeling considerations has been stripped out for the sake of mathematical rigor, applying
this kind of ideas in practice may have significant impact towards reducing polarization on societal
issues, and offering users a more balanced news diet and the possibility to participate in constructive
deliberation.

On the other hand, one needs to be careful how our framework will be applied in practice. One
potential source of misuse is when misinformation or disinformation is offered to counter true facts.
Here we assume that this aspect is orthogonal to our approach, and that the social-network platform
needs to mitigate this danger by providing mechanisms of information validation, fact checking, and
ethical compliance of the content before allowing it to circulate in the network.

Another issue is that, users often do not understand why they see a particular item in their feed; the
system content-filtering and prioritization algorithm is opaque to them. In the context of our proposal,
since we are suggesting to make content recommendations to selected users, it is important that
transparent mechanisms are in place for the users to opt in participating in such features, to understand
why they receive these recommendations, and in general, to be able to control their content.
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